The Kidspiration® in the Classroom: Math Made Visual lesson plan book supports teachers as they help students develop mathematical concepts, skills, thinking and reasoning. 30 lesson plans are included, aligned to NCTM standards and designed specifically to support K-5 math instruction using Kidspiration 3.

Lessons focus on core content strands, including number and operations, algebra, measurement, and geometry, in contexts that promote problem solving, reasoning and communication. Utilizing activities created in Kidspiration, these lessons help students develop conceptual understanding while communicating their thinking with pictures, models, words, numbers, math symbols and the math tools available in Kidspiration 3—color tiles, pattern blocks, base ten blocks, fraction boxes and fraction tiles.

This preview of Kidspiration® in the Classroom: Math Made Visual contains:

- Complete lesson grid and table of contents from Kidspiration in the Classroom: Math Made Visual
- Three complete lesson plans from Kidspiration in the Classroom: Math Made Visual
- Ordering Information
Lesson Grid and Table of Contents

<table>
<thead>
<tr>
<th>Lesson Name</th>
<th>Page</th>
<th>Grade Level</th>
<th>National Council of Teachers of Mathematics (NCTM) Content Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>K 1 2 3 4 5</td>
<td>Number & Operations</td>
</tr>
<tr>
<td>Counting Fish</td>
<td>6</td>
<td>✓ ✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ordering Sets</td>
<td>10</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Sorting Shapes</td>
<td>14</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Exploring Symmetry</td>
<td>22</td>
<td>✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Measuring with Tiles</td>
<td>26</td>
<td>✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Pattern Trains</td>
<td>30</td>
<td>✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Quick Images with Five and Ten Frames</td>
<td>34</td>
<td>✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Composing Shapes</td>
<td>40</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Adding It Up</td>
<td>46</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Adding with “Near-Doubles”</td>
<td>50</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Exploring Place Value</td>
<td>54</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Fact Families for Addition & Subtraction</td>
<td>58</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Covering Hexagons</td>
<td>62</td>
<td>✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Regrouping Game</td>
<td>66</td>
<td>✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Growing Patterns</td>
<td>70</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
</tr>
</tbody>
</table>

The complete table of contents from *Kidspiration® in the Classroom: Math Made Visual* is included above and on the following page. Lesson plans with stars are featured in this excerpt.

<table>
<thead>
<tr>
<th>Lesson Name</th>
<th>Page</th>
<th>K</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Number & Operations</th>
<th>Algebra</th>
<th>Geometry</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Digit Addition</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtraction with Regrouping</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparing Areas</td>
<td>88</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Division Stories</td>
<td>92</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Parts and Wholes</td>
<td>98</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building and Estimating Fractions</td>
<td>104</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparing Fractions</td>
<td>108</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Equivalent Fractions</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finding Factors with Rectangles</td>
<td>116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Flips, Slides and Turns</td>
<td>122</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adding Fractions with Unlike Denominators</td>
<td>128</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Area Models for Multiplication</td>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Long Division</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed Numbers and Improper Fractions</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Representing and Comparing Decimals</td>
<td>152</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pattern Trains

Grade Levels: K-2 (Ages 5-8)

NCTM Principles and Standards for School Mathematics

- Recognizes, describes and extends patterns such as sequences of shapes
- Analyzes how repeating patterns are generated
- Recognizes and names two-dimensional shapes
- Investigates the results of putting together two-dimensional shapes
- Counts with understanding and recognizes “how many” in sets of objects

Description

Young students develop algebraic concepts early through work with patterns, building the foundation for using symbolic rules to represent patterns in later years. In this lesson, students will use Kidspiration Pattern Blocks™ to build and extend repeating patterns. The lesson plan offers opportunities for students to develop the following concepts: patterning with repetition, composing shapes, counting, shape identification, estimation and prediction. Options and adaptations throughout the lesson make it appropriate and modifiable for the K-2 grade span.
Instructions

1. Introduce the lesson by asking students to think of things they see or hear that repeat. For example, can they think of any songs in which words are repeated? Are there patterns that they see on the floor or the wall, at home or at school? Can they find patterns on their clothing, with shapes or colors? Explain to students that today they are going to build trains with patterns.

2. The resources for this activity can be found at the following location: Kidspiration 3 Teacher menu>Teacher Resources Online>Lesson Plans>Grades K-2 Math>Pattern Trains. Save the Zip file and open the included Pattern Trains.kia activity.

3. Complete the first problem together as a class. Explain to students that the blocks represent the cars of a train, and that the cars form a pattern. Ask students to “think, pair, share” about Train 1. What do they notice? Give them time to think quietly before vocalizing their ideas in pairs. Then ask the pairs to share what they noticed with the class. Students may share any of the following: “It has 4 cars,” “I see 2 different shapes,” “I see blue-yellow-blue-yellow,” “It repeats, blue-yellow, blue-yellow.” If students are familiar with the names of shapes, they might offer “I see hexagon-trapezoid-hexagon-trapezoid.”

(Optional) Ask students to find the smallest unit that gets repeated in the train pattern. It may help students to recite the colors or shapes aloud, for example, “blue-yellow-blue-yellow” to determine the pattern’s repeating group, or core. They can also mark the core with the Cross-Out Stamp located on the Bottom toolbar.
4. Explain to students that they are going to follow the same pattern to finish building the train across the workspace. As a “think, pair, share,” ask students to estimate the total number of blocks in the completed train. Some students may pick a number, such as 6, simply because it is their favorite number, or their age. As needed, encourage students to pick a number based on how many blocks they think will fit across the workspace. Have students explain and share their reasoning.

5. Ask for a student volunteer to extend the train using pattern blocks. Have them reason aloud as they place the blocks. For example, “A blue always comes after a yellow. That was a yellow shape, so next I use a blue shape.” When they are finished, have them point to each shape and count aloud to find the total number of blocks used to form the train. Select the green text box and type the total number.

6. Discuss the following with students:
 - How did your estimate compare to the actual total number of blocks?
 - Are there other ways to count the total number of blocks? (For example, counting “2, 4, 6, 8, 10, 12” for each pair of hexagon-trapezoid.)
 - How many different kinds (or colors) of blocks were used to build the train?
 - How many of each kind of block was used to build the train? (In other words, how many hexagons? How many trapezoids?)
 - (Optional) How many times is the repeating unit, or core, repeated?
 - (Optional) If we make a long train with a core that is repeated 10 times, how many blocks would we need? How many hexagons? How many trapezoids?

7. Have students work independently to complete the activity, Pattern Trains.kia. The activity contains nine pattern trains for students to extend and count. Types of repetition include AB, ABC, AAB, ABA, ABB and AABB patterns.

8. Conclude the lesson by discussing all or a selection of the pattern trains. Show a completed activity or have students present their work. For each pattern, include the discussion questions from step 6. In addition, ask students to compare the trains:
 - Which train or trains required the fewest blocks? How many blocks?
 - Which train or trains required the most blocks? How many blocks?
Note: Some students may solve patterns not by counting shapes or color, but by general features. For example, a student might see the pattern below as “flat mountain, pointy mountain, flat mountain, pointy mountain.” Encourage students to share all the different ways they saw the pattern.

Assessment
- Assess students on their completed activities, checking for correct repetition of shapes and accurate counts. See Pattern Trains Exemplar.kid from the previously downloaded Zip file for a sample completed activity.

Adaptations
- Modify the activity to include written questions similar to those in step 6. Students can respond in writing using a Math Text Box from the Math palette.
- Students can add additional pages and create their own pattern trains. In pairs, one student can build the beginning of a pattern and the other can extend it.
- To include more complex patterns, or to have students extend patterns a longer distance, use smaller pattern blocks. Unlock any pattern blocks on the page and use the Resize Manipulatives button on the Bottom toolbar.
- Require students to record an estimate for the length of each train in blocks before extending the pattern. Students can compare their estimates to the actual count.
- Add more complexity to the activity by including patterns that involve rotation of shapes. Students can use the Rotate tools on the Bottom toolbar to position blocks into place.
- Require that students mark the repeating unit, or core, using the Cross-Out Stamp.
Multi-Digit Addition

❖ Grade Levels: 2-3 (Ages 7-9)

❖ NCTM Principles and Standards for School Mathematics

- Models situations that involve the addition of whole numbers, using objects, pictures and symbols
- Recognizes equivalent representations for the same number and generates them by decomposing and composing numbers
- Develops fluency in adding whole numbers
- Uses a variety of methods and tools to compute, including objects, mental computation, estimation, and pencil and paper
- Develops and uses strategies for whole number computations
- Understands the place value structure of the base-ten number system

Description

Elementary school students must develop fluency with efficient procedures for adding and subtracting multi-digit numbers, and understand such procedures in the context of place value. Students often learn the process of “carrying” and “borrowing” by rote, without tying it to important place value concepts. In this lesson, students will use Kidspiration Base Ten Blocks™ to solve multi-digit addition problems using visual models. After completing the activity, they will translate the steps that they take with base ten blocks to a standard procedure for adding multi-digit numbers.

Note: This lesson outlines the process for connecting work with base ten blocks to the traditional algorithm for adding multi-digit numbers. However, the activity can also be used if your curriculum has students develop their own strategies for adding multi-digit numbers, or introduces students to another method, such as the partial sums method. Whichever procedure or method is used, this lesson supports students’ understanding of the underlying place value concepts. The lesson can serve as an introduction to a procedure for adding multi-digit numbers, or to reinforce conceptual understanding among students who have already learned a procedure.
Instructions

1. Open a new workspace in the Kidspiration Base Ten Blocks Math Tool. On the **Bottom** toolbar, click the **Place Value Mat** button three times to add a four-column place value mat to the workspace. Explain to students that they are going to use base ten blocks to help them add large numbers. Bring out a **Math Text Box** from the **Math palette** and use the **Open Frame** and **Plus Sign** buttons on the **Bottom** toolbar to write the problem 1136+297.

2. Ask students to estimate the sum, and then elicit suggestions for representing the first addend, 1136, with base ten blocks. From the **Math palette**, bring out 1 thousand, 1 hundred, 3 tens and 6 ones. Ask students how they might represent the second addend, 297. After bringing the blocks out, distinguish them from the first addend by changing their color using a **Color** button on the **Bottom** toolbar.
3. Have students count the ones. Is 13 ones the only way to represent this quantity, or can we regroup? Select 10 ones and use the **Group** button on the **Bottom** toolbar to exchange the 10 ones for 1 ten.

Ask the class if the total value, as represented by the base ten blocks, has changed. Discuss how the quantity 13 is now represented as 1 ten and 3 ones instead of 13 ones, but the value of the blocks on the place value mat has not changed. It may help to remind students that this is very similar to trading 13 pennies for 1 dime and 3 pennies.
4. Ask students where on the place value mat this new ten should live. Move it to the tens column and have students count the number of tens.

5. Once students determine that they can regroup the tens, select 10 tens and use the Group button to exchange them for 1 hundred.
6. Ask students again if the value of blocks changed when regrouping occurred. Make sure that students are able to vocalize that there were 13 tens and now there is 1 hundred and 3 tens, and that these quantities are the same. The notion that only the representation, or make-up, has changed, and not the quantity, is critical to students understanding conceptually what goes on when adding multi-digit numbers using the standard procedure.

7. Move the new hundred to the hundreds column and ask students to count the hundreds. Can we regroup? Why not? How many thousands are there? What is the total value of the blocks now that we have added 1136 and 297? Use a Math Text Box to record the answer of 1433.

Note: For steps 3-7, you may wish to demonstrate and have students explore adding the place-values in a different order. For example, adding all of the thousands, hundreds, tens and ones, and then regrouping to find the solution.

8. If students are familiar with a standard procedure for adding multi-digit numbers, have a volunteer complete the same problem using the procedure. Tie each step in their process to each step with the visual model. For example, with the traditional algorithm below, how does writing a 3 in the ones place and “carrying” a 1 relate to the exchange of 13 ones for 1 ten and 3 ones?

```
  1136
+ 297
---
  1433
```
If students have not been introduced to a standard procedure, wait until they finish the student activity portion of the lesson before developing the procedure and tying it to the visual model.

9. The resources for the student activity portion of this lesson can be found at the following location: **Kidspiration 3 Teacher menu>Teacher Resources Online>Lesson Plans>Grades K-2 Math>Multi-Digit Addition**. Save the Zip file and open the included *Multi-Digit Addition.kia* activity. Students will complete six addition problems that are similar to the example problem. Circulate while students are working and ask them to verbalize their reasoning as they perform each step.

10. Reconvene as a class and go over each problem. Individual students or pairs can present one problem each.

Assessment

- Check completed activities for correct sums and use of regrouping. See *Addition Exemplar.kid* from the previously downloaded Zip file for a sample completed activity.
- Assess students on their ability to communicate their thinking and their process during the class example, independent work, and presentations.
- Give students a multi-digit addition problem and have them solve it using both base ten blocks and a paper-pencil procedure.

Adaptations

- As necessary, modify the column headings on the place value mats to fit your curriculum. For example, the headings *Ones, Tens, Hundreds and Thousands* can be changed to *Units, Rods, Flats and Blocks*.
- The activity *Multi-Digit Addition.kia* has students work with numbers through the thousands and contains problems that require regrouping up to three times. For work with smaller addends and problems requiring regrouping only once, see *Adding with Regrouping.kia* located here: **Kidspiration Starter>Activities>Math**.
Adding Fractions with Unlike Denominators

Grade Levels: 4-5 (Ages 9-11)

NCTM Principles and Standards for School Mathematics

- Uses visual models, benchmarks and forms to add commonly used fractions
- Recognizes and generates equivalent forms of commonly used fractions
- Develops and uses strategies to estimate computations involving fractions in situations relevant to students’ experience
- Uses models, benchmarks and equivalent forms to judge the size of fractions
- Develops an understanding of fractions as parts of a unit whole and as divisions of whole numbers

Description

Students often struggle with adding and subtracting fractions with unlike denominators because they memorize a series of steps without relying on number sense and without a connection to the underlying concept of equivalent fractions. In this lesson, students will use Kidspiration Fraction Boxes™ to model addition of fractions with unlike denominators. By using the tool to build fractions and dynamically search for equivalent fractions and common denominators, students will develop the ability to reason flexibly with fractions. Their work with concrete models will help them retain and apply related procedures for operating on fractions with efficiency and understanding.
Instructions

1. Open the lesson by presenting a situation that involves the addition of fractions with unlike denominators and uses student names from the class. For example, Brianna bought \(\frac{5}{6} \) of a pound of fudge and Jeremy bought \(\frac{1}{2} \) of a pound of fudge. Record both fractions on the board. First, ask which student, Brianna or Jeremy, bought more fudge. How do they know? Inform students that Brianna and Jeremy would like to figure out how much fudge they have altogether. Does this situation call for addition, subtraction, multiplication or division? Why? Then ask students to estimate how much fudge the two students purchased altogether.

2. Open a new workspace in the Kidspiration Fraction Boxes Math Tool. Demonstrate how to use a Math Text Box and the Plus Sign and Fraction Frame buttons on the Bottom toolbar to write \(\frac{5}{6} + \frac{1}{2} \). Bring a fraction box onto the workspace from the Math palette, and ask students how they might represent Brianna’s portion of fudge, \(\frac{5}{6} \) of a pound. What could the whole box represent? Discuss the meaning of the 5 and the 6, and show students how they can cut the whole (which represents 1 pound) into equal parts by using the up and down arrow buttons.

![Fraction Boxes](image)

Ask students what each of these parts represents (\(\frac{1}{6} \) of a pound), and how the parts could be colored to represent Brianna’s share. Demonstrate how to use a Color button on the Bottom toolbar to represent the amount of fudge that Brianna bought. Bring out another fraction box and repeat the process with a different color to represent the amount of fudge that Jeremy bought.

![Fraction Boxes](image)
3. Ask students to refine their original estimates based on the model. Altogether, do you think they have less than a pound of fudge, about a pound, more than a pound, or more than two pounds? Why? Discuss any misconceptions about adding fractions, such as the common student error of adding these two fractions to get \(\frac{9}{6} \).

4. Elicit suggestions from students as to how you might add Brianna and Jeremy’s portions of fudge. How can we add fractional amounts that are not the same size? There are several routes to a solution, and depending on the suggestions from students and your goal for the lesson, you may want to facilitate solving the problem a couple of different ways. Two common approaches to the problem are outlined below:

Method 1

Some students might suggest that \(\frac{3}{6} \) can “fit inside” of \(\frac{1}{2} \), or that \(\frac{3}{6} \) of Brianna’s pound of fudge can be “combined with Jeremy’s \(\frac{1}{2} \) pound to make 1 whole pound.” This concept of transferring a fractional quantity to “make a whole” can be demonstrated by multi-selecting \(\frac{3}{6} \) and dragging them to the empty \(\frac{1}{2} \) cell.

Note: A fraction box will only “accept” tiles if the fractional quantity being moved and the space to which it is moved are equivalent.

Does the model help us see how much fudge Brianna and Jeremy have altogether? Allow students to determine that the total amount is \(1\frac{2}{6} \) pounds of fudge. If they are working on simplifying fractions, they can use the arrow buttons to “re-cut” the top fraction box and explore fractions that are equivalent to \(\frac{2}{6} \). Once they see that \(\frac{2}{6} \) is equivalent to \(\frac{1}{3} \), click on the button that says “3 Parts” to officially change the top fraction from sixths into thirds. The simplified answer is \(1\frac{1}{3} \) pounds of fudge.
Method 2

A second way to show $\frac{5}{6} + \frac{1}{2}$ is to use fraction boxes to model finding a common denominator. Begin by representing each fraction, as before.

\[\frac{5}{6} \quad + \quad \frac{1}{2} \]

Can we find an equivalent fraction for $\frac{1}{2}$ that would make all of the pieces the same size? Show students how they can explore equivalent fractions with the up and down arrow buttons.

\[\frac{5}{6} \quad + \quad \frac{1}{2} \]

For example, $\frac{1}{2}$ of a pound is equivalent to $\frac{3}{4}$ of a pound, but are Brianna’s and Jeremy’s pieces all the same size? Continue changing the divisions in the fraction box until students see that $\frac{1}{2}$ is also equivalent to $\frac{3}{6}$, and that both Brianna and Jeremy’s portions can be thought of in terms of sixths.

\[\frac{5}{6} \quad + \quad \frac{1}{2} \]

To officially “re-cut” the bottom fraction into sixths, instead of halves, click on the button that says “6 Parts.” Now that Brianna’s and Jeremy’s portions of fudge are both in sixths of a pound, the pieces can be easily combined. Drag tiles between fraction boxes to make 1 whole.
Ask students to determine, based on the model, how much fudge Brianna and Jeremy have altogether. If the expectation is that students also simplify their answers, for example, from $1\frac{3}{6}$ to $1\frac{1}{3}$ pounds, they can use fraction boxes to model simplification as described in Method 1.

5. Use a Math Text Box to record the solution. Revisit original estimates and compare them to the solution.

6. Have students work individually or in pairs to complete eight problems on their own. The resources for the student activity portion of this lesson can be found at the following location: Kidspiration 3 Teacher menu>Teacher Resources Online>Lesson Plans>Grades 3-5 Math>Adding Fractions with Unlike Denominators. Save the Zip file and open the included Adding Fractions.kia activity.

Note: Depending on your curriculum, the goal of the lesson, and your students, you may want to allow students to solve the problems using any method. Alternatively, require that students find and model common or least common denominators before combining fractional quantities.
Assessment

- Assess students on their contributions to the class example problem.
- Have students present their solutions to the assigned problems. Assess them on their ability to explain their reasoning and justify their solution through the use of a model.
- Check completed activities for clear modeling of each problem and correct solutions. See *Adding Fractions Exemplar.kid* from the previously downloaded Zip file for a sample completed activity.

Adaptations

- Before modeling each problem in the activity, have students record an estimate.
- Add context to the addition problems by modifying the activity to include word problems.
- Add pages to the activity and create subtraction problems. Students can use the *Mark for Subtraction* button on the *Bottom* toolbar to mark tiles with an X and represent “taking away.”
- The following activities can be used to differentiate instruction or extend the activity. All activities are located here: *Kidspiration Starter>Activities>Math.*
 - Students who need more practice adding and subtracting fractions with like denominators can complete the fraction boxes activity *Fractions-Add and Subtract.kia.*
 - Using fraction boxes in the *Step Workspace* can help students develop a process and a meaningful sequence of steps when adding fractions with unlike denominators. See *Unlike Denominators-Adding.kia.*
 - Fraction tiles can also help students visualize, understand and find common denominators. See the activity *Finding Common Denominators.kia.*
Kidspiration® in the Classroom lesson plan books

Developed by educators, Kidspiration in the Classroom lesson plan books offer standards-aligned lesson ideas to help students learn to think and master key concepts in core curriculum areas – providing practical ideas and step-by-step directions that encourage students’ learning and thinking.

Kidspiration® in the Classroom: Math Made Visual offers 30 lesson plans to help students develop conceptual understanding of number and operations, algebra, measurement and geometry.

Also available! Kidspiration® in the Classroom: Reading Essentials offers 50 lesson plans that focus on early literacy and the essential components of effective reading instruction, including phonemic awareness, phonics, vocabulary, comprehension and content literacy.

Special volume license pricing

Get the most out of Kidspiration and visual learning in your school. Volume license pricing is available for our lesson plan books, helping teachers take advantage of the power of visual learning and improve achievement across the curriculum. When you purchase a volume license, you receive a bound copy of the book and a CD which contains an Adobe® PDF file of the lesson plan book. Simply place the file onto your server to make the entire book instantly available to your staff.

Pricing

Kidspiration® in the Classroom: Math Made Visual

Single book $29.95
School-wide license $199

Kidspiration® in the Classroom: Reading Essentials

Single book $29.95
School-wide license $199

How to order

Online:
www.inspiration.com

Phone:
800.877.4292

email:
sales@inspiration.com

Dealer:
Contact your favorite education dealer.

©2008 Inspiration Software, Inc. All rights reserved. Inspiration Software® and Kidspiration® are registered trademarks of Inspiration Software, Inc. The Kidspiration design mark is a trademark of Inspiration Software, Inc. All other brands are the property of their respective owners.